Excess molar enthalpies and excess molar volumes of mixtures of cycloalkanes and pseudo-cycloalkanes

T.M. Letcher^{a,*}, J.D. Mercer-Chalmers^a, U.P. Govender^a and R. Battino^b

^a Department of Chemistry and Applied Chemistry, University of Natal, Durban (South Africa)
^b Department of Chemistry, Wright State University, Dayton, OH (USA) (Received 13 January 1993; accepted 17 February 1993)

Abstract

Excess molar enthalpies and volumes were measured at atmospheric pressure and at 298.15 K for three-component systems. A pseudo-cycloalkane of carbon number m was mixed with a cycloalkane of carbon number m over the whole composition range. The values of m ranged from 6 to 8. The results were used to test the principle of congruence.

INTRODUCTION

In an earlier investigation [1], we tested the principle of congruence on a mixture of alkanes and pseudo-alkanes, by means of a novel null method. In this work, a novel set of mixtures involving accurately made up pseudo-cycloalkanes has been used to test the principle which implies that a pseudo-cycloalkane $[0.5c-C_kH_{2k} + 0.5c-C_lH_{2l}]$ will behave like $c-C_mH_{2m}$ where m = (k + l)/2. This paper reports H_m^E and V_m^E values for (pseudo-c- C_8H_{16} [0.5c- C_6H_{12}] + c- C_7H_{14}], and H_m^E values for (pseudo-c- C_8H_{16} + 0.5c- C_6H_{12}] + c- C_7H_{14}] and H_m^E values for (pseudo-c- C_6H_{12}] + c- C_7H_{14}] + c- C_6H_{12}) and ([0.6c- C_5H_{10} + 0.4c- $C_{10}H_{20}$] + c- C_7H_{14}].

EXPERIMENTAL

The cyclopentane was obtained from Fluka (>99% GC), the cyclohexane from SARchem (99% GC), the cycloheptane from Aldrich (>99% GC), the cyclooctane from Janssen Chemicals (>99% GC), and the

^{*} Corresponding author.

cyclodecane from Fluka (>99% GC). The pseudo-cycloalkanes were made up as previously described [1]. The H_m^E values were measured using an LKB 2277 (Bioactivity Monitor) microflow calorimeter, and the V_m^E values were measured using an Anton Paar DMA 601 vibrating-tube densimeter. The methods have been previously described [2, 3].

RESULTS

The H_m^E results are given in Table 1, together with the deviations Δ , where

$$\Delta = H_{\rm m}^{\rm E}/{\rm J}\,{\rm mol}^{-1} - x(1-x)\sum_{r=0}^n A_r(1-2x)^r$$

The $V_{\rm m}^{\rm E}$ values are given in Table 2, together with the deviations Δ' , where

$$\Delta' = V_{\rm m}^{\rm E}/{\rm cm}^3 \, {\rm mol}^{-1} - x(1-x) \sum_{r=0}^n B_r(1-2x)^r$$

The experimental error in H_m^E is of the order of 1 J mol⁻¹ or 1%, and in

TABLE 1

Excess molar enthalpies H_m^{E} for $x(0.5\text{c-C}_k\text{H}_{2k} + 0.5\text{c-C}_l\text{H}_{2l}) + (1 - x)\text{c-C}_m\text{H}_{2m}$ where m = (k + l)/2 and for $x(0.6\text{c-C}_5\text{H}_{10} + 0.4\text{c-C}_{10}\text{H}_{20}) + (1 - x)\text{c-C}_7\text{H}_{14}$ at 298.15 K

x	$H_{\rm m}^{\rm E}$ / J mol ⁻¹	Δ	x	H ^E /J mol ⁻¹	Δ	x	$H_{\rm m}^{\rm E}/$ J mol ⁻¹	Δ
$\overline{x(0.5c-C)}$	$C_5H_{10} + 0.5c$	$-C_7H_{14}) +$	(1-x)c-C	₆ H ₁₂				
0.1120	9.2	-0.1	0.5609	21.6	0.6	0.8466	10.8	-0.1
0.1638	12.7	0.1	0.6038	20.2	-0.3	0.8787	8.6	-0.2
0.3524	19.6	-0.1	0.7204	17.5	0.1	0.9045	7.3	0.3
0.5408	20.7	-0.4						
x(0.5c-C	$C_8H_{16} + 0.5c$	$-C_6H_{12}) +$	(1-x)c-C	${}_{7}H_{14}$				
0.0648	0.6	0.03	0.4833	2.2	0.04	0.7482	1.6	-0.3
0.1526	1.3	-0.04	0.6222	2.2	-0.4	0.8191	1.3	-0.09
0.1807	1.6	0.03	0.6605	2.9	0.5	0.8287	1.5	0.2
0.2708	2.2	-0.02						
x(0.5c-0)	$C_{10}H_{20} + 0.5$	c-C ₆ H ₁₂) +	-(1-x)c-0	C_8H_{16}				
0.1676	4.5	-0.4	0.4881	8.6	0.03	0.8168	5.5	-0.04
0.1984	6.1	0.4	0.5638	8.9	-0.2	0.8758	4.2	-0.2
0.3642	8.6	0.0	0.7796	8.3	0.3			
x(0.6c-0	$C_{3}H_{10} + 0.4c$	-C ₁₀ H ₂₀) +	-(1-x)c-($C_{7}H_{14}$				
0.1625	26.3	0.04	0.4306	47.8	1.5	0.8395	23.1	-0.3
0.2799	39.2	-0.1	0.5307	44.2	-0.9	0.8712	19.8	0.1
0.3991	44.9	-0.8	0.6805	37.8	0.4			

TABLE 2

Excess molar volumes V_m^E for $x(0.5c-C_kH_{2k} + 0.5c-C_lH_{2l}) + (1-x)c-C_mH_{2m}$ where m = (k + l)/2 at 298.15 K

<i>x</i>	$V_{\rm m}^{\rm E}/{ m cm^3mol^{-1}}$	Δ	x	$V_{\rm m}^{\rm E}/$ cm ³ mol ⁻¹	Δ	x	$V_{\rm m}^{\rm E}/$ cm ³ mol ⁻¹	Δ
 x(0.5c-C	$_{8}H_{16} + 0.5c-C$	$C_6H_{12}) + (1 -$	-x)c-C ₇ H ₁	4				
0.2191	-0.00203	0.0020	0.4706	-0.00034	0.002	0.7337	-0.00237	0.002
0.3631	-0.00300	-0.001	0.6263	-0.00562	~0.002	0.8569	-0.00488	-0.0006
x(0.5c-C	$G_{6}H_{12} + 0.5c-C$	$C_{10}H_{20}) + (1)$	-x)c-C ₈ H	16				
0.0505	-0.00181	-0.003	0.5015	-0.02492	-0.002	0.8135	-0.01438	-0.0004
0.2134	-0.00736	0.003	0.6416	-0.01756	0.002	0.8910	-0.01073	-0.0005
0.3999	-0.02237	-0.0007						

TABLE 3

Coefficients A, and B, for H_m^E or $V_m^E [x(0.5c-C_kH_{2k} + 0.5c-C_lH_{2l}) + (1-x)c-C_mH_{2m}]$ where m = (k+l)/2 and $[x(0.6c-C_5H_{10} + 0.4c-C_{10}H_{20}) + (1-x)c-C_2H_{14}]$

Mixture	$oldsymbol{A}_0$	A_1	A_2
$\overline{x(0.5c-C_5H_{10}+0.5c-C_7H_{14})+(1-x)c-C_6H_{12}}$	85.2145	-0.9939	5.7348
$x(0.5c-C_8H_{16} + 0.5c-C_6H_{12}) + (1-x)c-C_7H_{14}$	11.4067	1.3863	-3.4867
$x(0.5c-C_{10}H_{20} + 0.5c-C_{6}H_{12}) + (1-x)c-C_{8}H_{16}$	35.3082	7.7945	2.3380
$x(0.0c-C_5H_{10}+0.4c-C_{10}H_{20}) + (1-x)c-C_7H_{14}$	183.3820	37.7404	-2.1361
	B_0	\boldsymbol{B}_1	B ₂
$x(0.5c-C_8H_{16}) + 0.5c-C_8H_{12}) + (1-x)c-C_7H_{14}$	-0.0092	0.0109	-0.0326
$x(0.5c-C_{6}H_{12} + 0.5c-C_{10}H_{20}) + (1-x)c-C_{8}H_{16}$	-0.0913	-0.0099	0.0529

 $V_{\rm m}^{\rm E}$ they are of the order of 0.002 cm³ mol⁻¹, and in x it is estimated to be less than 1×10^{-4} . The coefficients A_r and B_r are given in Table 3.

DISCUSSION

Our results show a small positive excess enthalpy and a small negative excess volume of mixing for all the mixtures. Mixtures containing the $c-C_5H_{10}$ appear to produce the greatest divergence from the congruence principle. This shows that the effect of adding a $-CH_2$ - group to $c-C_3H_{10}$ is not the same as the addition of a $-CH_2$ - group to $c-C_8H_{16}$ or $c-C_{10}H_{20}$. In general, the greater the disparity in the carbon number the greater the divergence from the congruence principle. The cycloalkane mixtures do not satisfy the congruence principle as well as the *n*-alkane mixtures do.

ACKNOWLEDGEMENTS

The authors thank FRD (South Africa) for financial assistance, and Professor M. Sankar, of the University of Durban Westville, for his help and the use of his microcalorimeter.

REFERENCES

- 1 T.M. Letcher, J.D. Mercer-Chalmers, B.A.J. Bean and R. Battino, J. Chem. Thermodyn., 29 (1992) 1229.
- 2 J. Suurkiusk and I. Wadső, Chem. Scr., 20 (1982) 155.
- 3 T.M. Letcher and R.C. Baxter, J. Chem. Thermodyn., 19 (1987) 321.